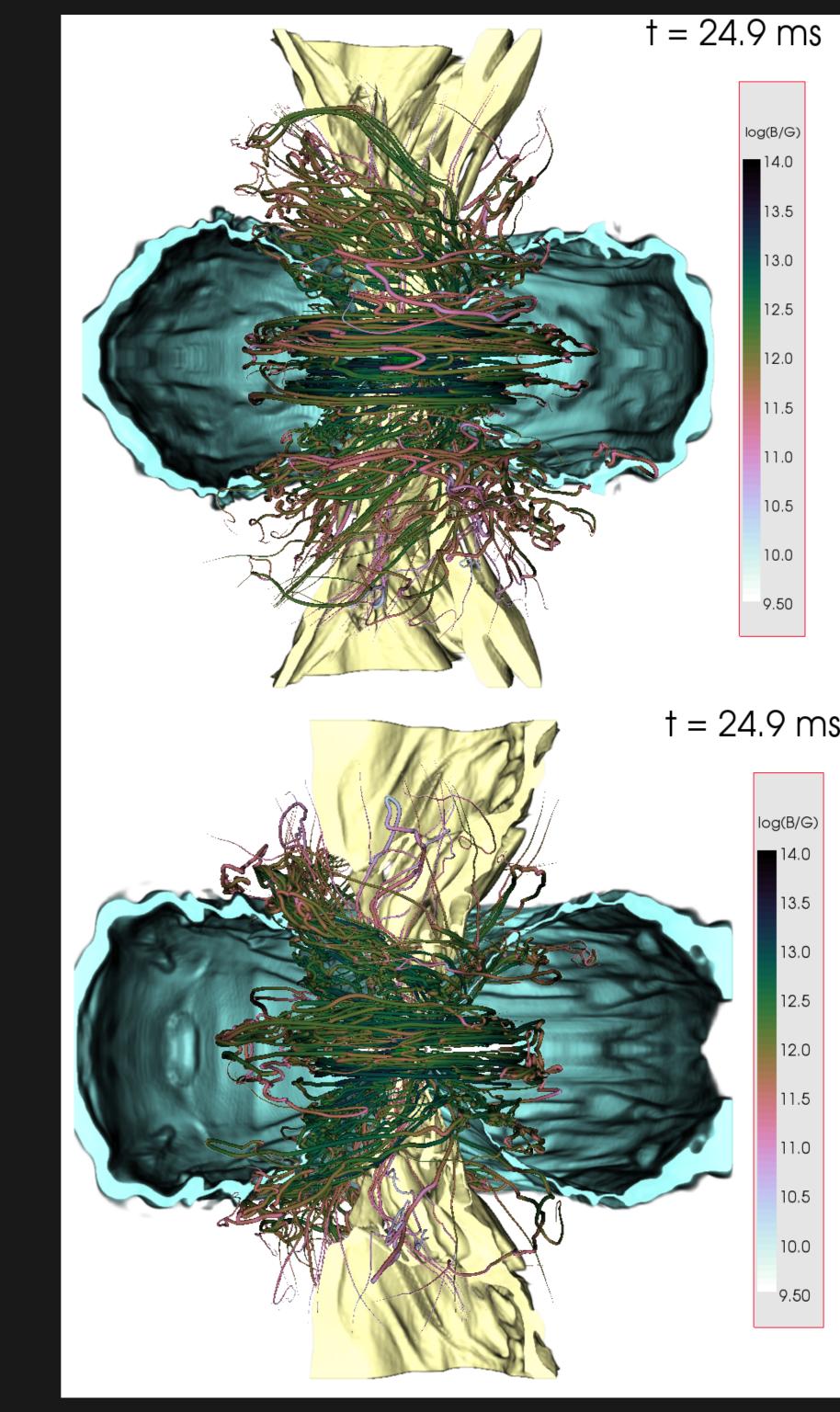
Non-ideal effects in magnetised BNS merger simulations

Ian Hawke

github.com/IanHawke orcid.org/0000-0003-4805-0309 STAG, University of Southampton

ianhawke.github.io/slides/compose21



Non ideal MHD

Ideal MHD assumes $\sigma \to \infty$ to enforce

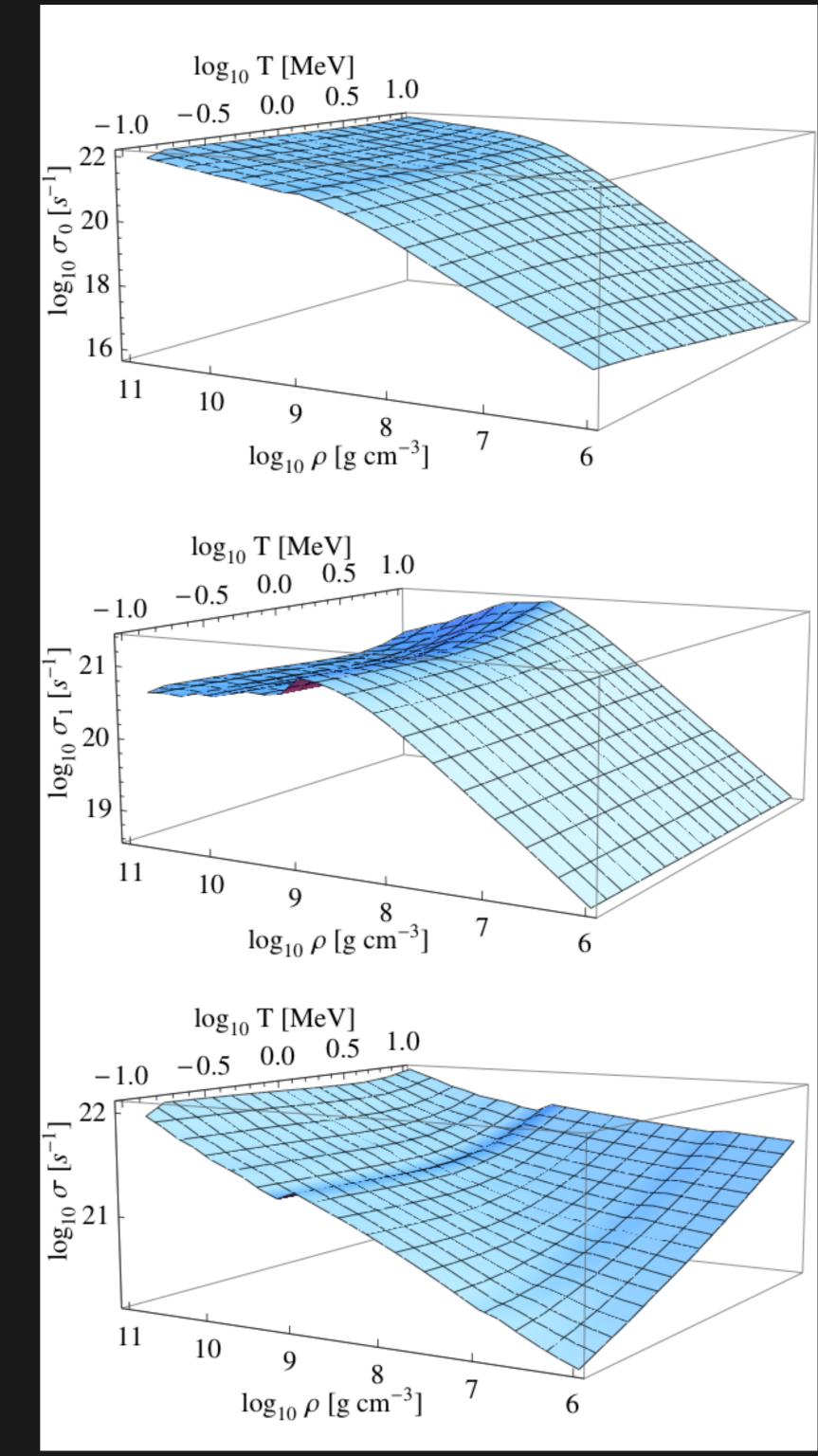
$$\mathbf{E} = -\mathbf{v} \times \mathbf{B}$$
.

Detailed calculations show σ drops when

- density drops;
- temperature increases;
- magnetic field increases.

All possible in (post) merger.

Harutyunyan & Sedrakian, 1605.07612



Resistive MHD

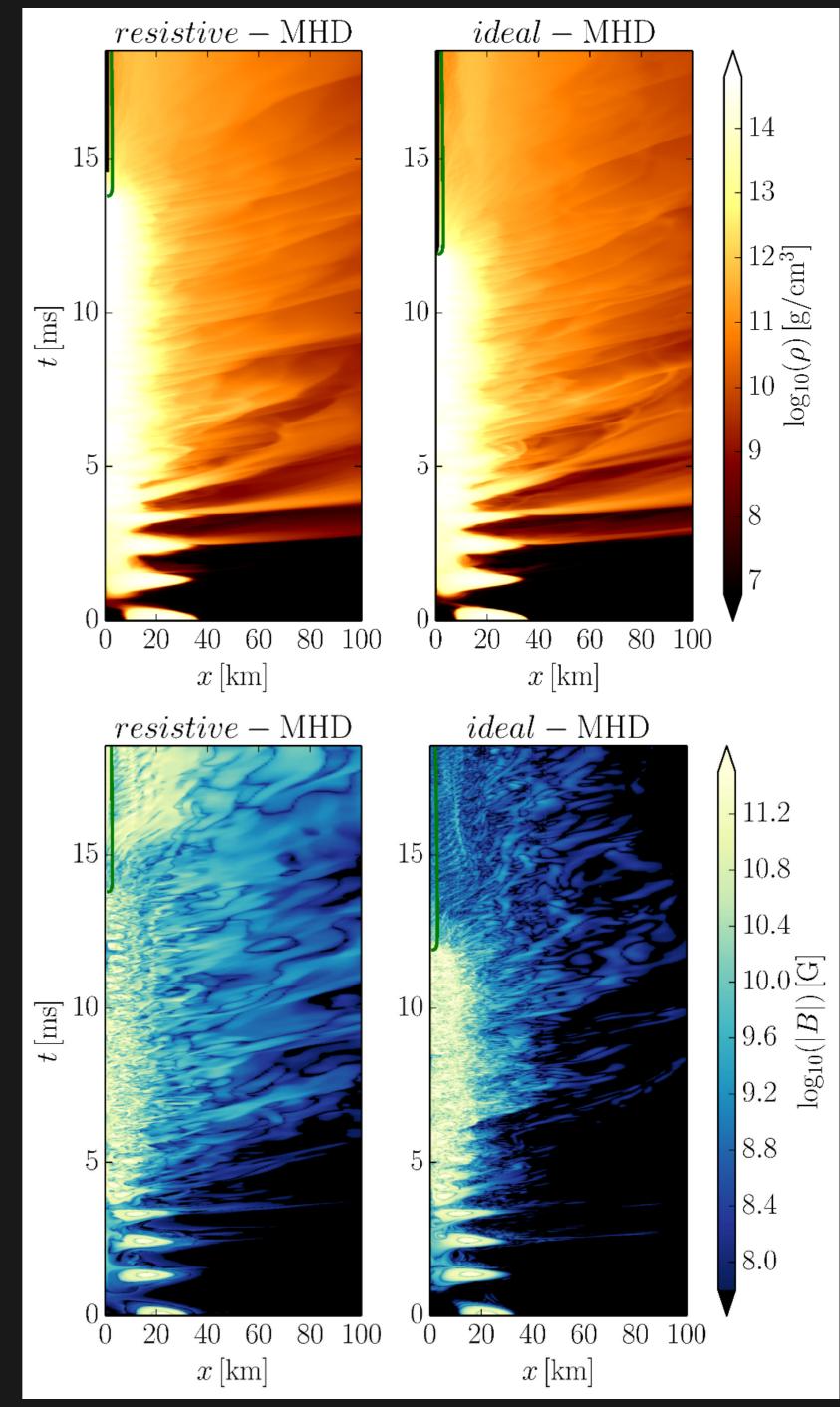
Instead impose $e^a \sim \eta j^a$,

$$\partial_t E_i + \partial_k (\epsilon^{ijk} B_j) \sim \frac{W}{\eta} \left[E_i + \epsilon_{ijk} v^j B^k - (v_k E^k) v_i \right].$$

Simulations done at "large" resistivity, eg

- Ponce et al,
- Dionysopoulou et al,
- Shibata et al.

Numerical stiffness as $\eta \to 0$.



Dionysopoulou et al, 1502.02021

LES effects

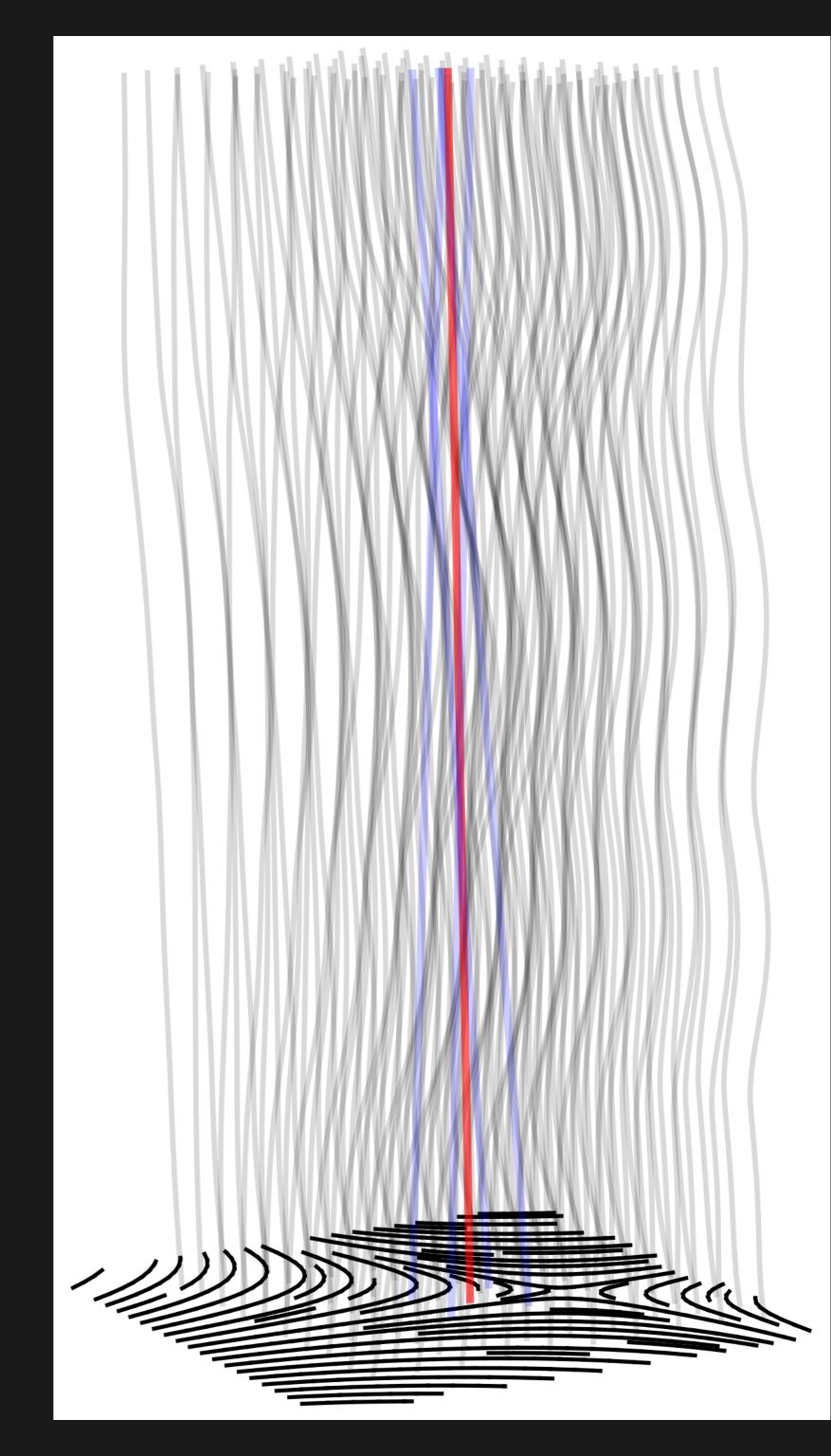
- Even if physics ideal on *micro*-scale...
- Numerics \implies average over $\sim 10 100$ m scale.

Averaging: $u^a = \langle u^a \rangle + \delta u^a \rightarrow$ "non-ideal" subgrid closures.

Averaged currents won't be ideal! Eg

$$\eta \sim \langle -\delta u^b j^a \langle F_{ba} \rangle + u^b j^a \delta F_{ba} \rangle.$$

See eg Viganò et al, or Bucciantini and del Zanna.



Relaxation systems

Toy problem of Liu (see LeVeque):

$$\partial_t B + \partial_x E = 0,$$

$$\partial_t E + a \partial_x B = \eta^{-1} (f(B) - E).$$

Use Chapman-Enskog expansion $E = f(B) + \eta E_1$ to get

$$\partial_t B + \partial_{\chi} f(B) = \eta \partial_{\chi} \left(\left[a - (f')^2 \right] \partial_{\chi} B \right).$$

- Smaller system, so cheaper.
- Source now $\propto 77$, not 77: stiffness gone.
- Diffusive correction: shocks, timestep, stability issues.

Current sheet

- Standard error-function diffusive solution;
- Use "small" conductivity $\sigma = \eta^{-1}$: hard test for expansion;
- Extremely good
 agreement with resistive
 MHD (using IMEX);
- Expected convergence with conductivity.

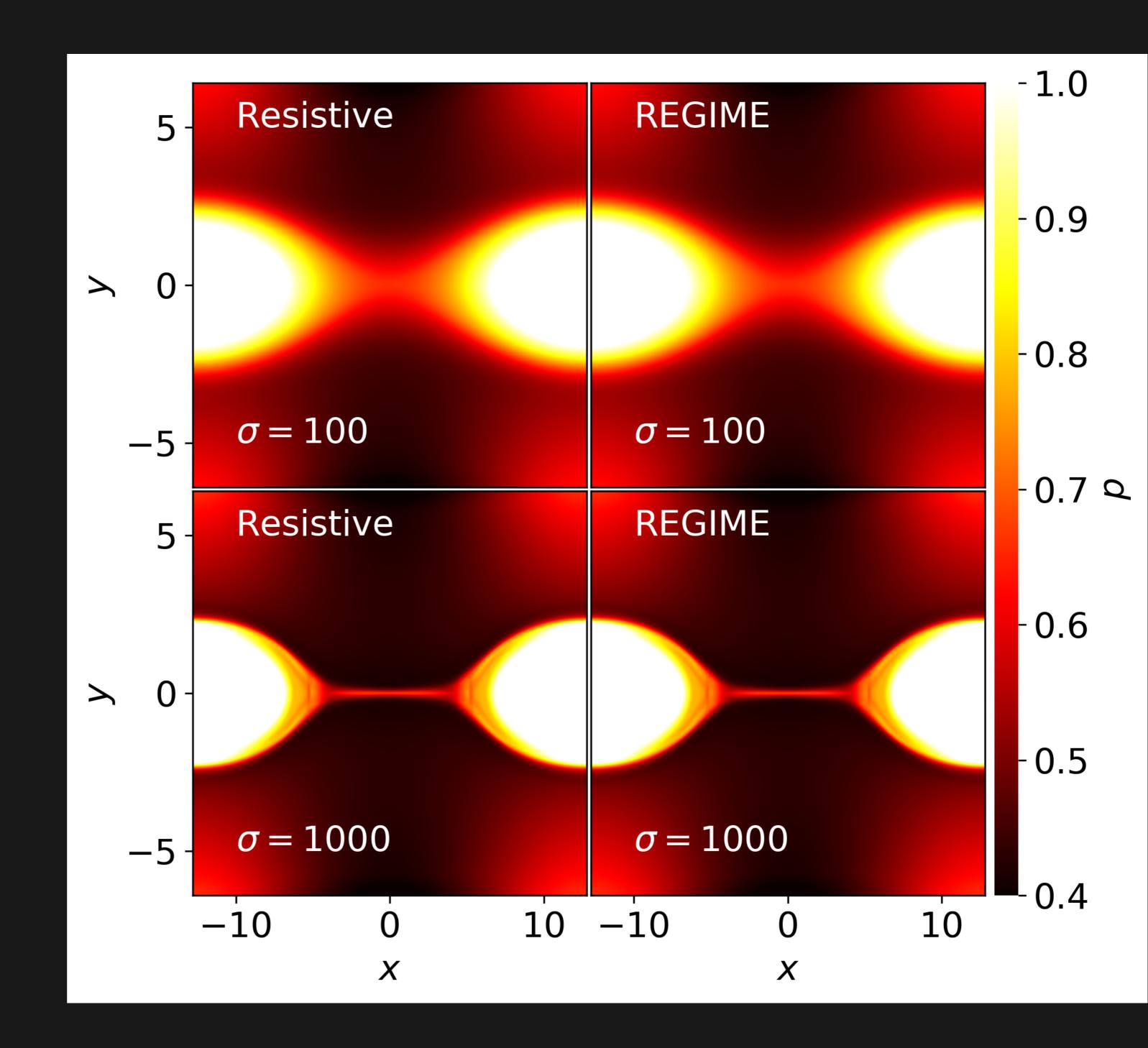


Wright & Hawke, 1906.03150

Reconnection

- Resistivity leads the magnetic "islands" to connect;
- The width of the connection is $\propto \eta = \sigma^{-1}$;
- Extremely good agreement with resistive MHD;
- Expected convergence with conductivity.

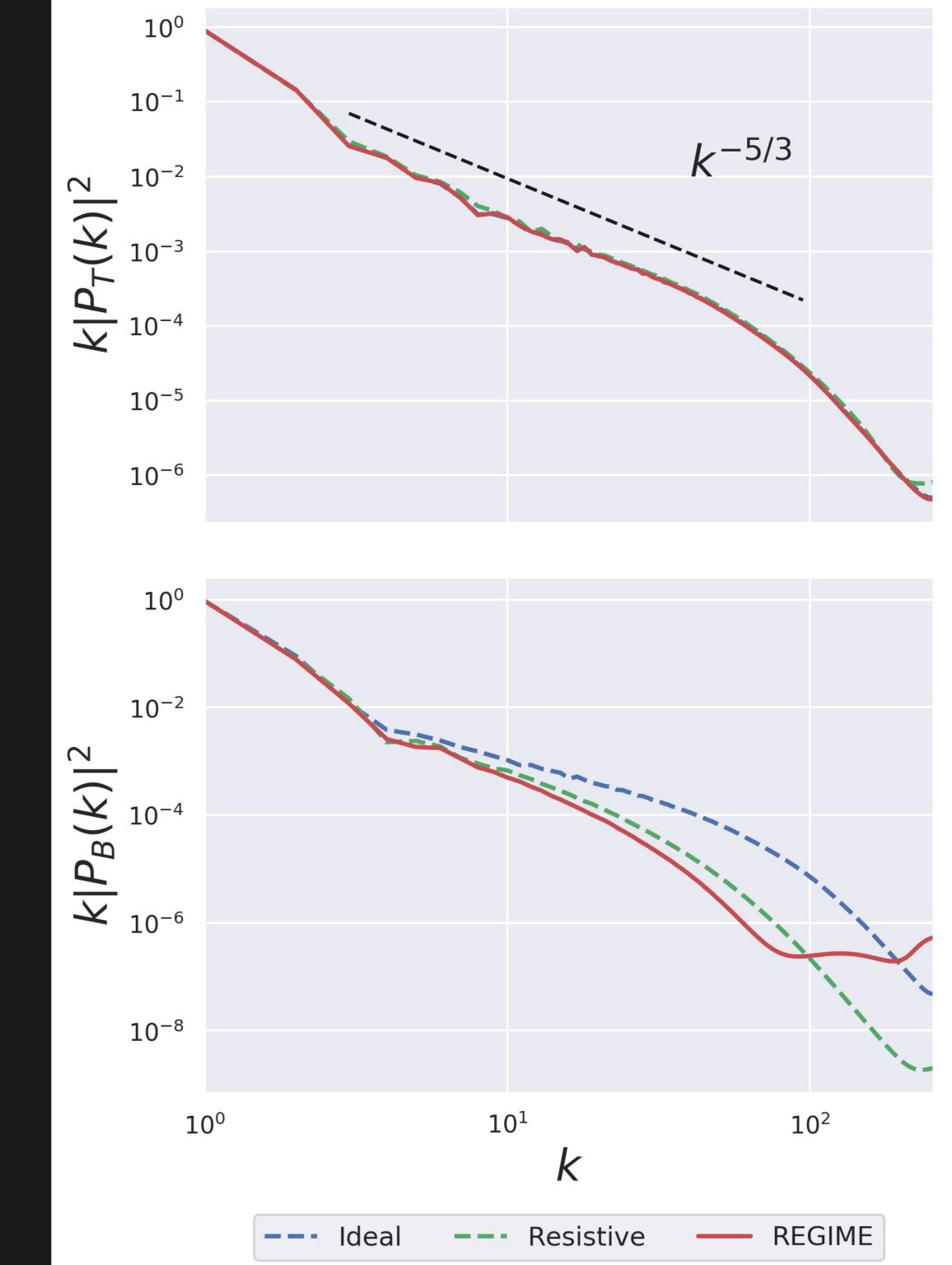
Wright & Hawke, 1906.03150



Kelvin-Helmholtz Instability

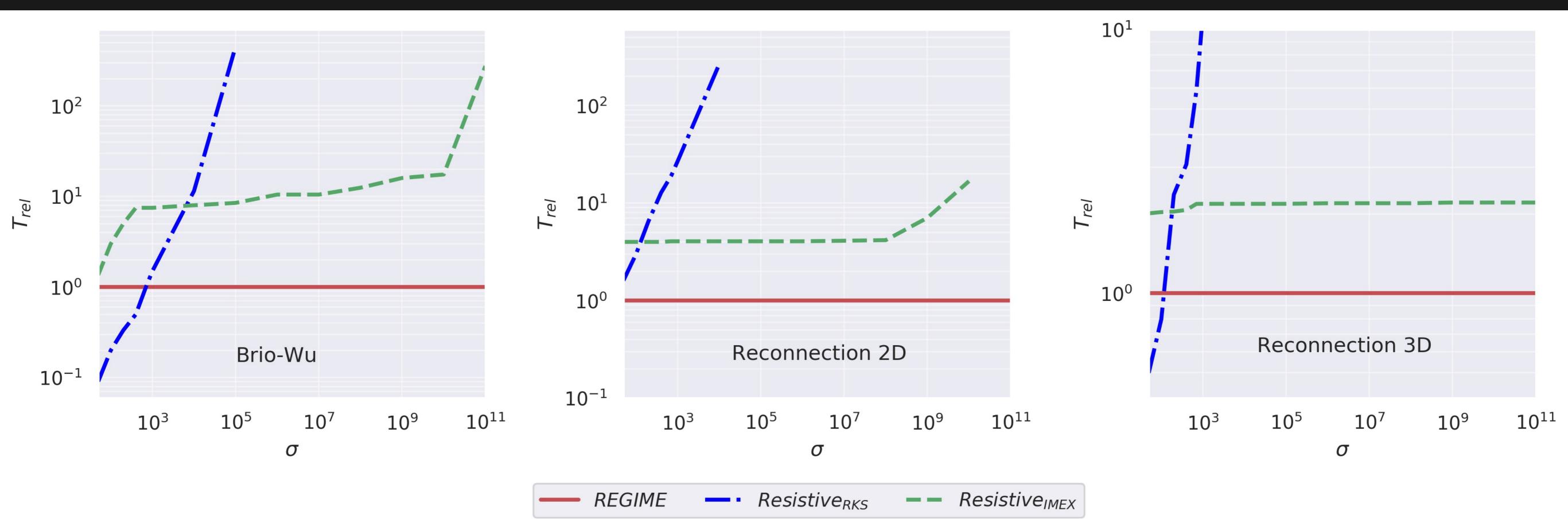
- Magnetic energy cascades to all scales;
- Good agreement with resistive MHD at larger scales;
- The source term approach is *not* capturing subgrid behaviour.

Wright & Hawke, 1906.03150



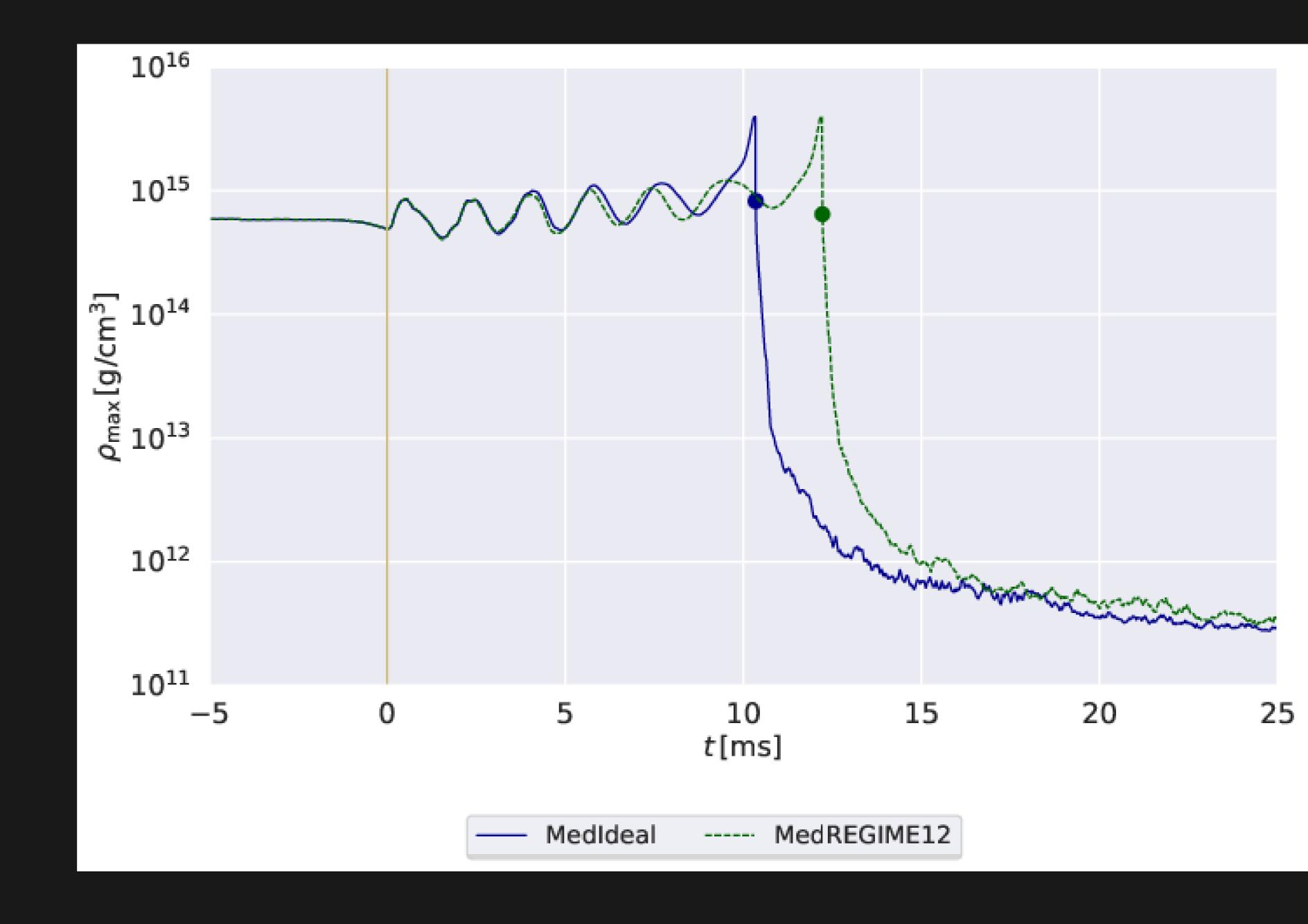
Performance

- Many factors faster than full model.
- For neutron stars want $\sigma \gtrsim 10^{12}$.



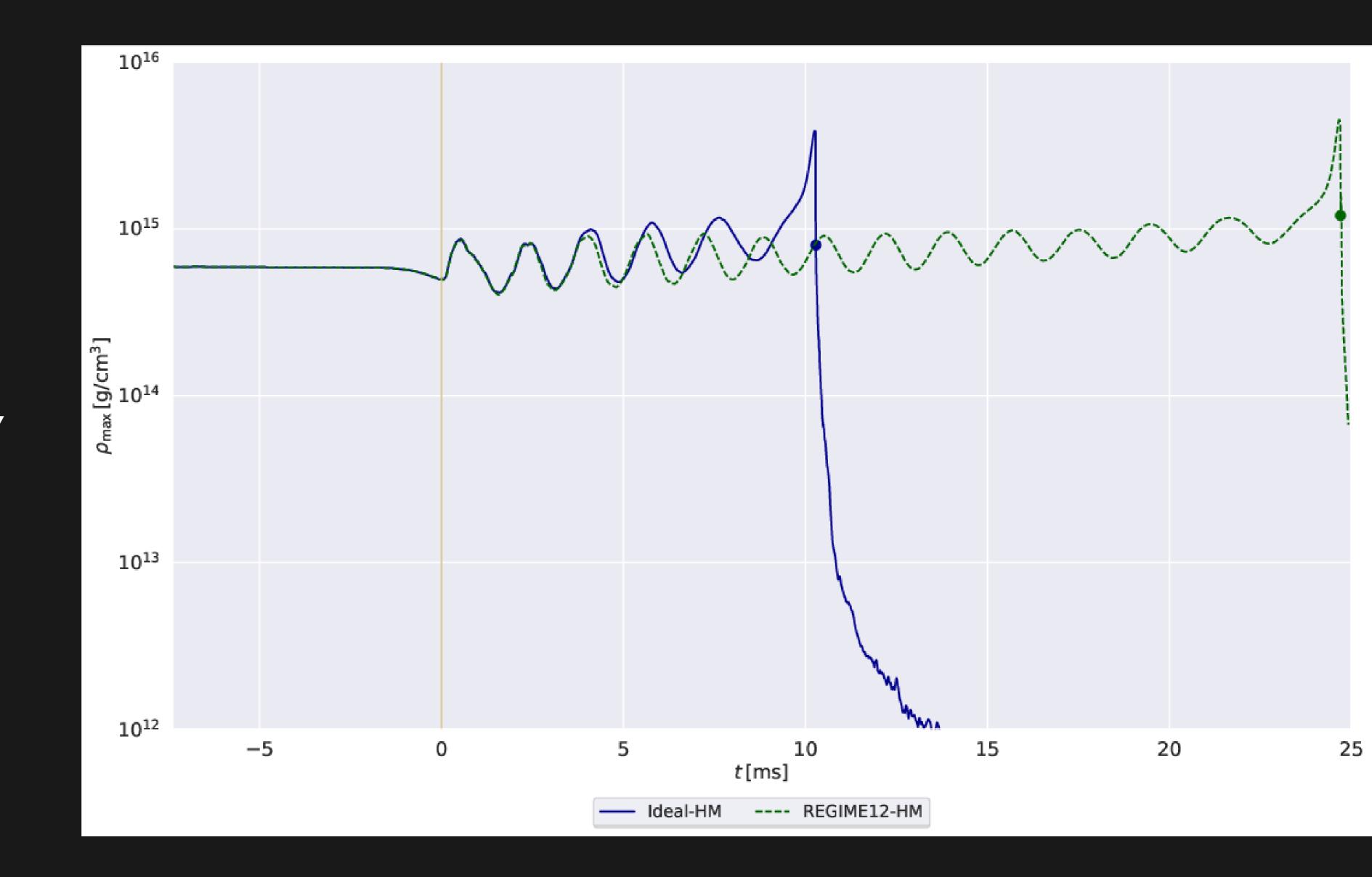
$B \sim 10^{12} G$

- Kawamura et al, $M \sim 1.6 M_{\odot},$ gamma-law EOS;
- Resistive case $\sigma \simeq 2 \cdot 10^{17} \; \mathrm{s}^{-1};$
- Qualitative results are similar;
- Post-merger
 collapse delayed
 by resistivity.



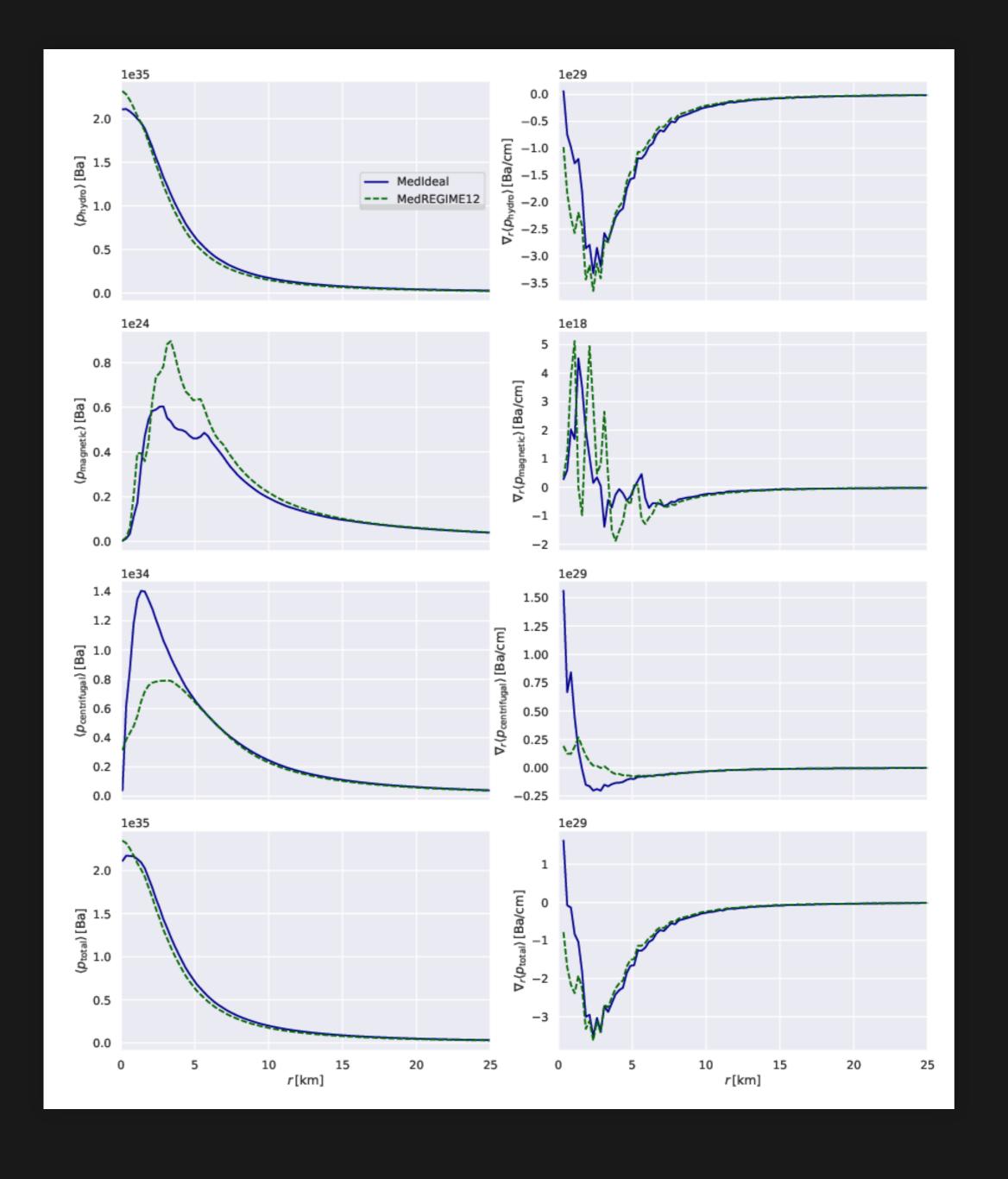
$B \sim 10^{16} G$

- Helicity timescale $\sim \eta |B|;$
- Resistive case $\sigma \simeq 2 \cdot 10^{17} \text{ s}^{-1};$
- Collapse massively delayed by resistivity;
- Suggests helicity evolution key?



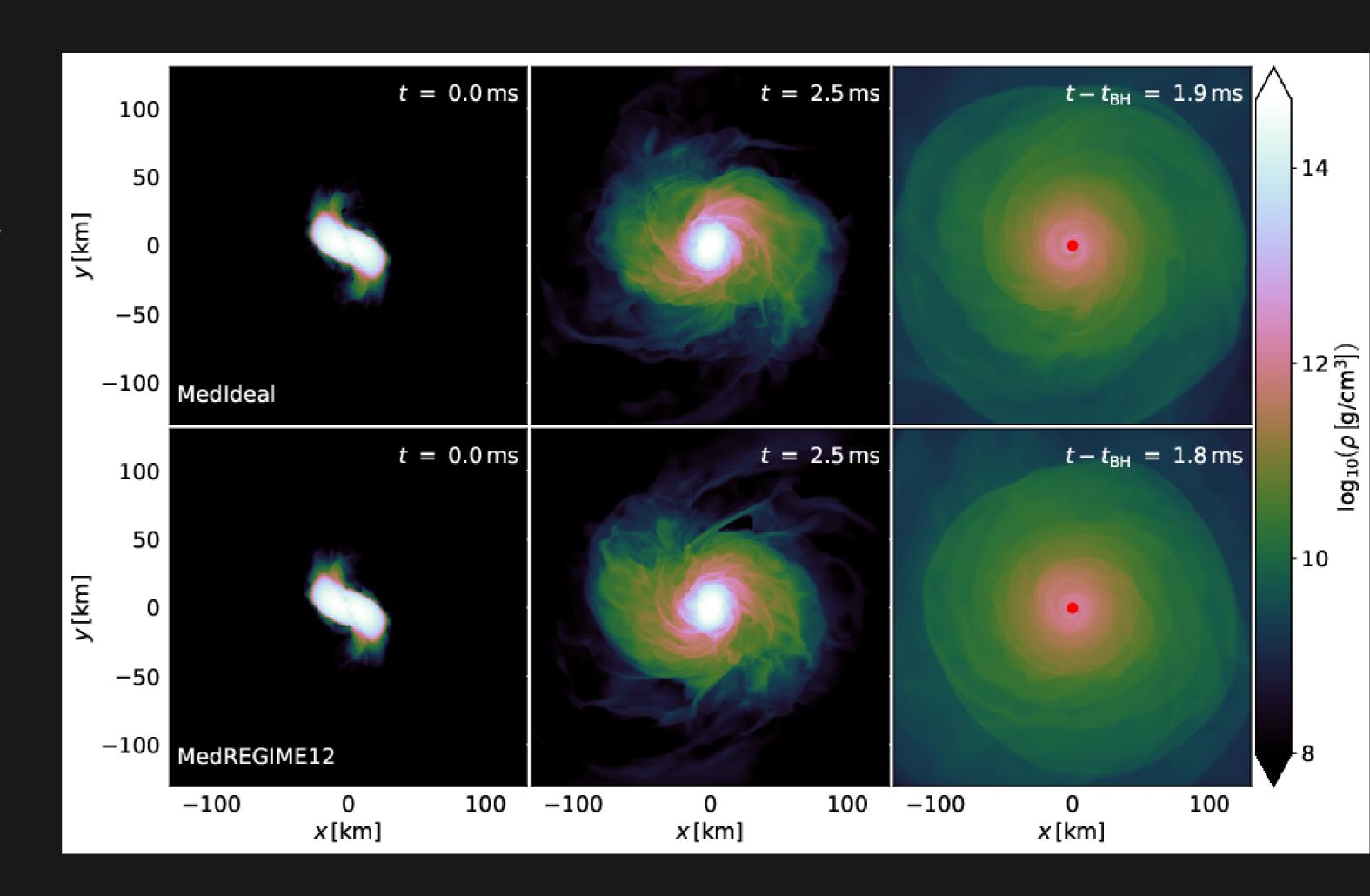
Pressure support

- Angle-averaged slices;
- ρ , e unchanged: energy not put into heat;
- Magnetic field differences larger;
- Effective "centrifugal pressure" main difference;
- Suggests: resistivity re-orders field (helicity), reduces turbulent magnetic drag, increases rotation, delays collapse.



Summary

- BNS mergers often *nearly* ideal.
- Including only leading order non-ideal effects
 - can avoid stiffness problems;
 - can show qualitative physical changes.
- How to capture physical effects on average at this order?



The general case

GR has source terms. Schematically

$$\partial_t \mathbf{q} + \partial_i \mathbf{f}^{(i)}(\mathbf{q}, \overline{\mathbf{q}}) = \mathbf{s}(\mathbf{q}, \overline{\mathbf{q}}),$$

$$\partial_t \overline{\mathbf{q}} + \partial_i \overline{\mathbf{f}}^{(i)}(\mathbf{q}, \overline{\mathbf{q}}) = \eta^{-1} \overline{\mathbf{s}}(\mathbf{q}, \overline{\mathbf{q}}).$$

Chapman-Enskog expansion still works:

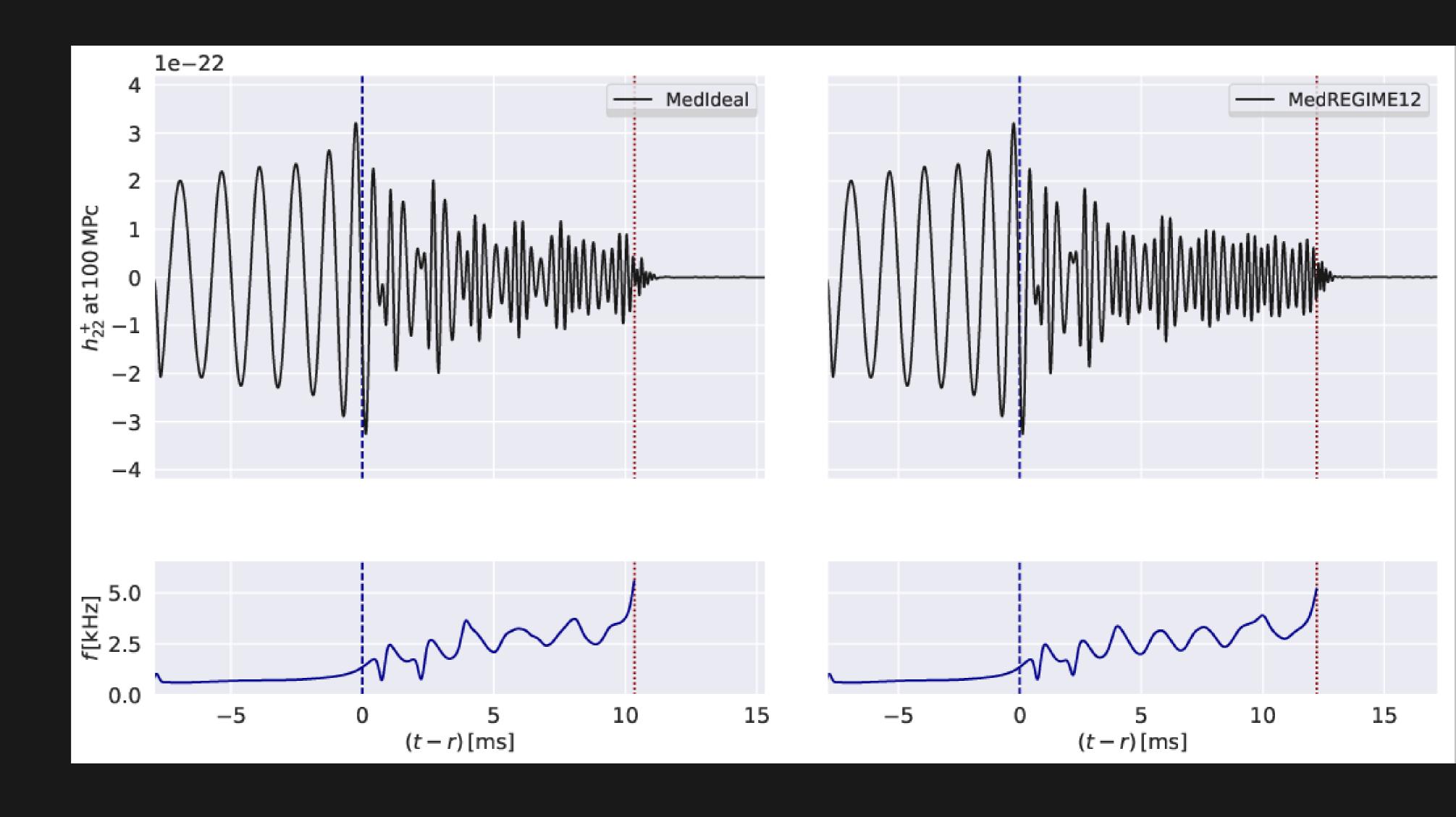
$$\partial_t \mathbf{q} + \partial_i \left(\mathbf{f}_0^{(i)} + \mathbf{\eta} \mathbf{F}^{(i)} \right) = \mathbf{s}_0 + \mathbf{\eta} \left(\mathbf{S} + \partial_i \mathbf{D}^{(i)} \right).$$

With $\mathbf{D}^{(i)} \sim A^{ij} \partial_j \mathbf{q}$ we still have diffusive correction.

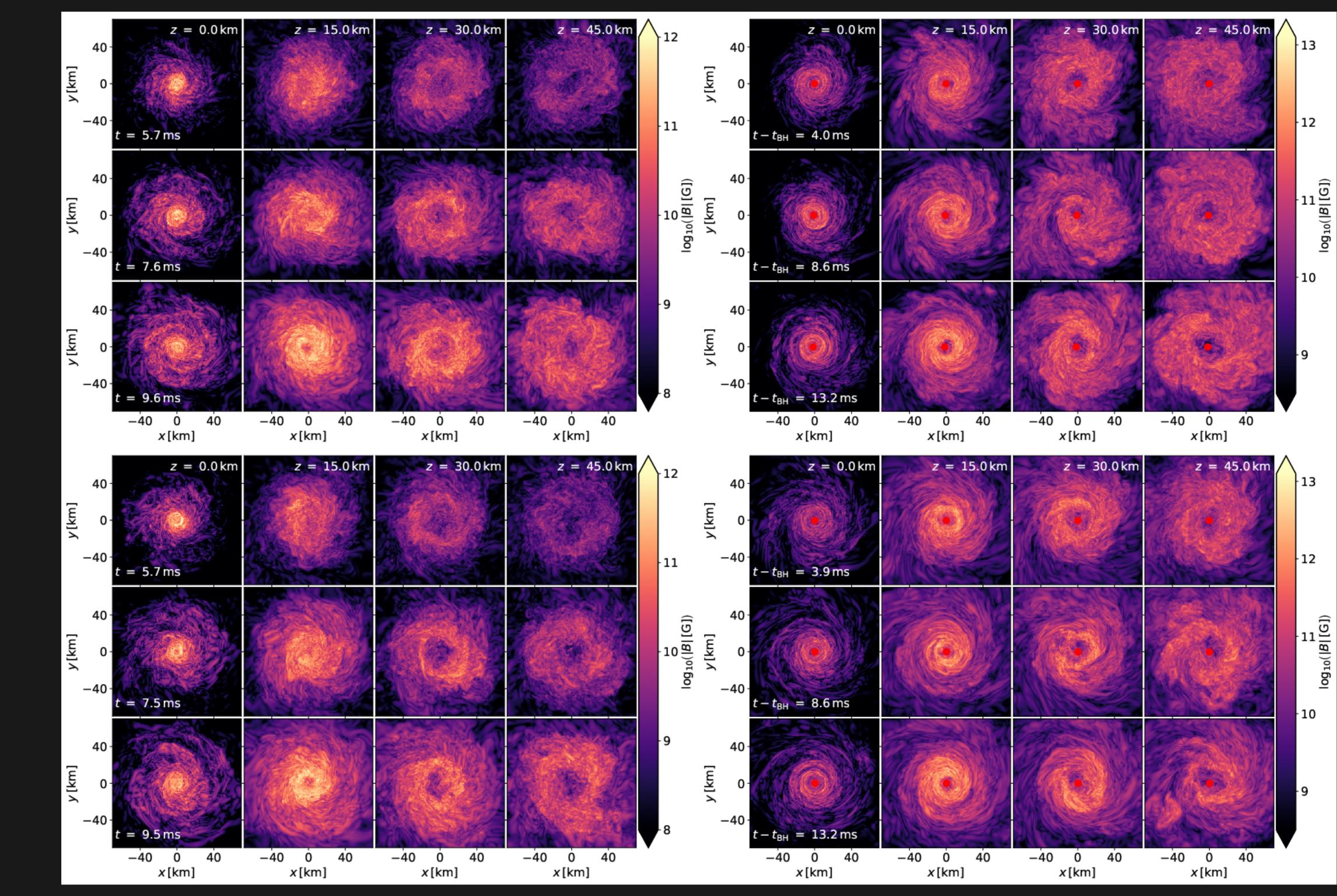
GWs

Resistivity damps modulation faster.

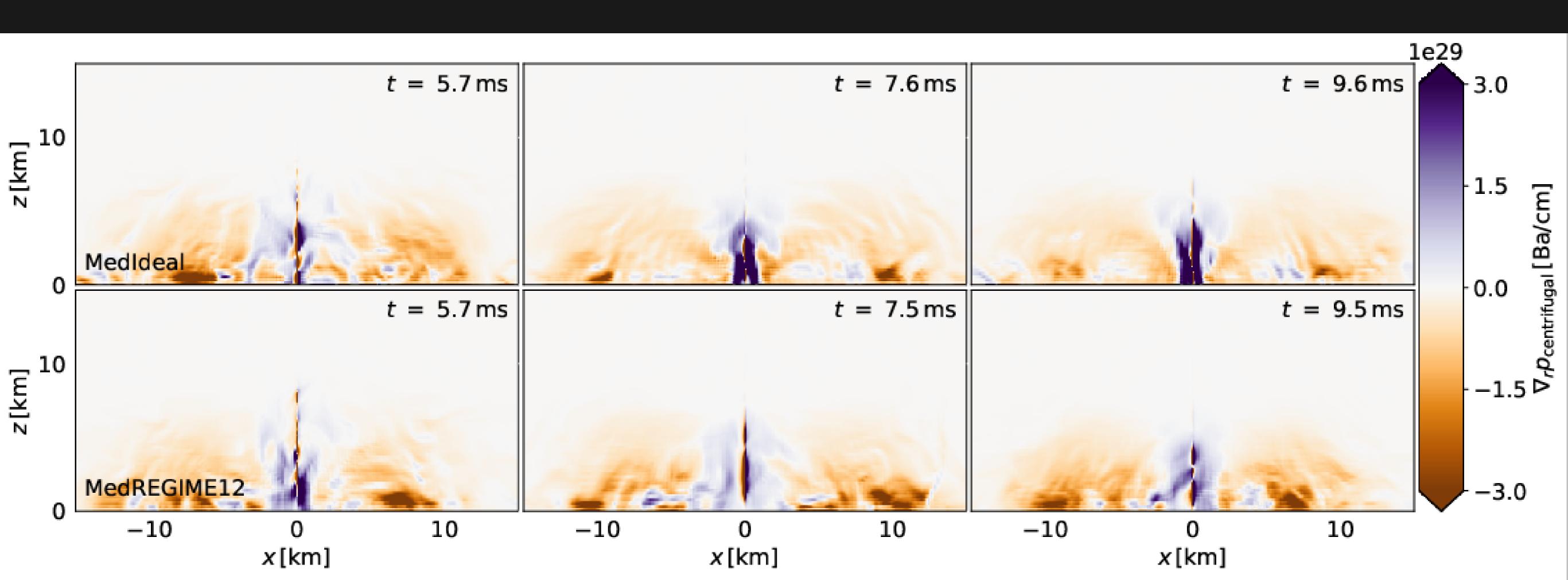
Effect of delayed collapse, not cause.



|B|



Centrifugal pressure



Field Structure

- Resistivity changes the magnetic field structure;
- Post-merger the field is "turbulent", messy;
- Resistivity re-orders the field, reducing "drag";
- Increase in rotational effective pressure seen, delaying collapse.



Israel-Stewart toy model

Extreme simplification of Israel-Stewart:

$$\partial_t T + \partial_x q = 0,$$

$$\tau_q \partial_t q = \tilde{q}(T) - q, \qquad \tilde{q} = -\lambda \partial_x T.$$

Chapman-Enskog for $\tau_q \ll 1$:

$$\partial_t T = \lambda \partial_{xx} T - \tau_q \lambda^2 \partial_{xxxx} T.$$

- Retention-diffusion equation.
- Stability limits asymptotically stricter from $\partial_x^{(4)}$ term.